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Imaging genetics combines neuroimaging and genetics to assess the relationships
between genetic variants and changes in brain structure and metabolism. Sparse
canonical correlation analysis (SCCA) models are well-known tools for identifying
meaningful biomarkers in imaging genetics. However, most SCCA models incorporate
only diagnostic status information, which poses challenges for finding disease-specific
biomarkers. In this study, we proposed a multi-task sparse canonical correlation
analysis and regression (MT-SCCAR) model to reveal disease-specific associations
between single nucleotide polymorphisms and quantitative traits derived from multi-
modal neuroimaging data in the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
cohort. MT-SCCAR uses complementary information carried by multiple-perspective
cognitive scores and encourages group sparsity on genetic variants. In contrast
with two other multi-modal SCCA models, MT-SCCAR embedded more accurate
neuropsychological assessment information through linear regression and enhanced
the correlation coefficients, leading to increased identification of high-risk brain regions.
Furthermore, MT-SCCAR identified primary genetic risk factors for Alzheimer’s disease
(AD), including rs429358, and found some association patterns between genetic
variants and brain regions. Thus, MT-SCCAR contributes to deciphering genetic risk
factors of brain structural and metabolic changes by identifying potential risk biomarkers.

Keywords: imaging genetics, sparse canonical correlation analysis, magnetic resonance imaging, positron
emission tomography, single nucleotide polymorphisms, multi-task learning

INTRODUCTION

Imaging genetics has recently emerged as a method for investigating imaging and genetic
biomarkers related to diseases such as Alzheimer’s disease (AD) (Bogdan et al., 2017). Identified
neuroimaging and genetics biomarkers can provide a complementary understanding of the brain’s
structure and metabolism (Zhang et al., 2011). Moreover, the vast amounts of diagnostic and
neuropsychological information from various perspectives enable the discovery of disease-specific
biomarkers. Therefore, it is essential to simultaneously analyze multiple neuroimaging techniques,
such as magnetic resonance imaging (MRI), fluorodeoxyglucose positron emission tomography
(FDG-PET), genotyping, and clinical diagnostic data. In this study, we aimed to build a model to
identify disease-specific biomarkers across multiple imaging modalities, which can be used as an
effective clue for disease diagnosis and targeted therapy.
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Numerous studies have attempted to identify the associations
between genotypic data such as single nucleotide polymorphisms
(SNPs) and neuroimaging quantitative traits (QTs) (Rasetti and
Weinberger, 2011). Because genotypic data and imaging QTs
are multivariate, several bi-multivariate methods have been
proposed to better characterize their associations. Liu et al.
explored parallel independent component analysis (PICA) to
detect the associations between brain function and genetic
variants. However, this method cannot restore meaningful SNPs
and regions of interest (ROIs), which has led to a lack of
reasonable biomarker interpretation (Liu et al., 2009). Sparse
canonical correlation analysis (SCCA) has a strong capability
for bi-multivariate association identification and interpretable
variable selection. Accordingly, many efforts have attempted to
apply SCCA to neuroimaging genetics. Boutte et al. introduced
an SCCA model with least absolute shrinkage and selection
operator (LASSO) constraints on neuroimaging genetics data
fusion (Boutte and Liu, 2010). Hao et al. presented a multi-view
SCCA model to establish associations between SNPs, QTs, and
cognitive outcomes (Hao et al., 2017). However, these multi-
view SCCA models are a simple extension to conventional SCCA
models. The requirement that SNP canonical weight vectors
associate with all modal data is too strict, and could result in
not making full use of all modal information. To address this
limitation, Du et al. developed a multi-task SCCA model that
could be used to jointly analyze SNPs and multiple neuroimaging
data by treating each association as an individual learning task
(Du et al., 2021). However, this model’s neglect of diagnostic
information means that biomarkers identified by these multiple-
data models may not be sufficiently disease-specific.

To detect more complex and meaningful associations, studies
to date have applied diagnostic information into SCCA methods
(Yan et al., 2018; Du et al., 2020). Yan et al. proposed an outcome-
relevant SCCA model based on a subject similarity matrix (Yan
et al., 2018). Du et al. integrated multi-task SCCA and logistic
regression in a sophisticated model to identify robust disease-
related imaging and genetic patterns by incorporating diagnostic
status information (Du et al., 2020). Classified diagnostic
information, such as AD, mild cognitive impairment (MCI),
and healthy control (HC), facilitates the association between
SNPs and QTs; however, roughly dividing the disease stages does
not provide any more accurate information than do continuous
neuropsychological assessments measured from different angles.

To address the above problems, we proposed a novel SCCA
model with the capacity to extract disease-specific biomarkers
across multiple neuroimaging modalities. The proposed multi-
task sparse canonical correlation analysis and regression (MT-
SCCAR) model integrates multi-task SCCA and multi-task linear
regression in a fused model and uses multiple cognitive scores
(CSs) as auxiliary information to induce associations between
SNPs and QTs. Multi-task sparse canonical correlation analysis
and regression considers the relationships within subjects from
different disease courses and can find disease-specific biomarkers.
We also considered underlying hierarchical information among
SNPs by modeling structural relationships as divided by gene
or by linkage disequilibrium (LD) in a group sparsity penalty.
To evaluate MT-SCCAR’s effectiveness, we performed extensive

experiments to find associations between SNPs and two imaging
QTs, including gray matter density and standard uptake value
ratio (SUVR) extracted from MRI and positron emission
tomography (PET), respectively. Compared with the other two
multi-modal SCCA models that used real Alzheimer’s Disease
Neuroimaging Initiative (ADNI) cohort data, MT-SCCAR not
only outperformed these models in its ability to identify genetic
AD risk factors, but also detected robust AD brain risk regions
across multiple neuroimaging modalities. Thus, our proposed
model has the potential to understand disease mechanisms from
both structural and metabolic perspectives.

MATERIALS AND METHODS

Data Sources and Preprocessing
Real neuroimaging and genetic data used in this study were
obtained from the ADNI1 database. A total of 305 non-Hispanic
Caucasian subjects with genotype, neuroimaging, and cognitive
assessment data at the ADNI1 baseline were downloaded from
the LONI website,1 including 83 HC, 148 MCI, and 74 AD
subjects. The Mini-Mental State Examination (MMSE) is a
numeric scale to test cognitive functions, including attention,
calculation, and responsiveness to simple commands (Tombaugh
and McIntyre, 1992). The Functional Activities Questionnaire
(FAQ) evaluates instrumental activities of daily life, such as
financial management and meal preparation (Teng et al., 2010).
The Alzheimer’s Disease Assessment Scale Cognitive Subscale
(ADAS-Cog) mainly measures cognitive ability such as word
recall, comprehension of spoken language, and orientation (Cano
et al., 2010). Table 1 shows the characteristics of the subjects.

Genotyping Data and Processing
Genotypes for 305 subjects were performed using the Illumina
HumanHap610-Quad BeadChips from the ADNI1 database. The
SNP data were lifted to hg19 build using lift over tool (Kent et al.,
2002). To get pure SNP data, we used a genetic analysis tool
PLINK (Purcell et al., 2007) to filter the SNPs using the following
quality control criteria: gender check, sibling pair identification,
call rate check (<90%) per subject and SNP marker, the Hardy-
Weinberg Equilibrium (HWE p < 10–6), and marker removal
by the minor allele frequency (MAF < 0.05), SNP data were
further imputed using Michigan imputation server to estimate

1http://adni.loni.usc.edu/

TABLE 1 | Characteristics of the subjects.

Subjects HC MCI AD

Number 83 148 74

Gender(M/F) 50/33 98/50 39/35

Age(mean ± std) 77.76 ± 4.59 76.62 ± 6.92 76.96 ± 6.91

Education(mean ± std) 15.68 ± 3.09 15.88 ± 2.77 14.27 ± 3.37

MMSE (mean ± std) 29.18 ± 1.11 26.09 ± 3.14 20.57 ± 3.20

FAQ (mean ± std) 0.54 ± 1.25 6.62 ± 8.96 19.75 ± 3.50

ADAS-Cog(mean ± std) 6.00 ± 2.89 13.72 ± 3.03 26.09 ± 11.64
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FIGURE 1 | The numbers of SNPs belonging to each AD risk gene used in this study.

FIGURE 2 | Schematic illustration of MT-SCCAR.
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the missing genotypes based on the HRC r1.1 2016 panel (Das
et al., 2016). The post-imputation quality control used the
rsq > 0.3 and MAF of 0.1 (Li et al., 2010).

Since our study focused on the top 20 AD risk genes
listed on the AlzGene database2 and references (Tanzi et al.,
2007; Wang et al., 2012a). After imputation, we selected all
the SNPs within ± 5k base pairs of the gene boundary using
the ANNOVAR annotation (Wang et al., 2010). The above
procedures yielded 3793 SNPs belonging to the top 20 risk genes.
Figure 1 presents the AD risk genes and the number of pre-
selected SNPs. Moreover, considering the structural relationship
among SNPs, we used Haploview (Barrett et al., 2004) to divide
the LD block using the LD-Spline algorithm with D

′

> 0.8,
resulting in 209 blocks containing 3770 SNPs. A total of 894 tag
SNPs were also assigned by Haploview in pairwise mode and an
r2 threshold was set to 0.8. These tagged SNPs represented the
genetic variation across a particular region and could facilitate
the association study (Montpetit et al., 2006). Furthermore, each
SNP value was coded in an additive fashion to reflect the number
of minor alleles.

Neuroimaging Data and Processing
The baseline 1.5T MRI scans were aligned to the standard
Montreal Neurological Institute (MNI) space, resampled to
2 × 2 × 2 mm3 voxels, registered by SPM software package
(Ashburner and Friston, 2007). Then, we extracted the gray
matter tissue from the MRI scans and calculated mean gray
matter densities of 116 ROIs based on MarsBar AAL atlas
(Tzourio-Mazoyer et al., 2002). After removing 26 ROIs of the
cerebellum, mean gray matter densities of 90 ROIs were used as
QTs in our study.

The FDG-PET scans were co-registered to each subject’s same
visit MRI scans and normalized to MNI space by SPM tool.
We further excluded white matter regions by masking the PET
with gray matter masks obtained by the segmentation of the
same subject’s co-registered MRI. Then, the PET scans were
normalized into the cerebellar gray matter reference region
defined on the AAL atlas to generate SUVR images. After this,
we used SUVR of 90 ROIs as QTs in our study by removing the
26 ROIs of cerebellum. Moreover, all the QTs were adjusted to
exclude the influence of gender, age, and education.

Methods
In this paper, we denote lowercase letters as vectors, uppercase
letters as matrices. ||x||2 denotes the Euclidean norm, ||X||2,1
denotes the sum of the Euclidean norms of the rows of X,
and ||X||1,1 denotes the absolute sum of all elements of X.

The CS-Related Features Selection Model for
Imaging Genetics
Assuming that there are n subjects with pSNPs, qROIs from
M imaging modalities, and G different cognitive outcomes.
We used X ∈ Rn × p,Ym ∈ Rn × q (m = 1, ..., M), and
zg ∈ Rn × 1 (g = 1, ..., G

)
to represent genetic data, multiple

imaging data, and cognitive scores, respectively. The basic

2www.alzgene.org

principle of MT-SCCAR is to find U ∈ Rp × M and V ∈ Rq × M

to maximize the correlation between Xum and Ymum,
where uim indicates the weight of the ith SNP for the mth
modality, and vjm indicates the weight of the jth ROI for the
mth modality. To identify imaging genetic biomarkers that
are relevant to CS and disease, the multi-task linear regression
objective was combined with the multi-task SCCA (MTSCCA)
objective, which can be formulated as:

min
U,V

LR (V)+ LSCCA (U,V)+� (U)+� (V) . (1)

The above model consists of four parts, LR (V) detects
disease-relevant imaging QTs. LSCCA (U,V) captures the bi-
multivariate associations between SNPs and multiple imaging
QTs. � (U) and � (V) are the regularization terms to enforce
sparsity of U and V , so only a small number of interpretable
variables can be selected. This model integrates the advantages
of MTSCCA and linear regression, which has a certain
superiority in using complementary cognitive information.
Figure 2 provides a schematic overview of MT-SCCAR. SNPs
were classified into the same group by either gene or LD.
Accordingly, SNPs with gene or LD information and tagSNPs
were input to the SCCA component separately, which was
used to establish the relationships between genetic data and
multiple imaging data. The linear regression component was
used to introduce CSs into the SCCA part. The multi-task
modeling method guaranteed the ability to process multiple
imaging and CS data. Unlike conventional unsupervised SCCA
models, MT-SCCAR is a supervised SCCA model, which
considers the relationships within subjects from different
disease courses.

The Linear Regression Model for CS-QT Associations
In the proposed model, the associations between CSs and
multi-modal neuroimaging QTs were established by multi-task
regression. For each task, we built a regression model for
revealing CS-related neuroimaging QTs:

LR (V) =
∑M

m = 1

∑C

c = 1

∑n

l = 1

∣∣∣∣∣∣vT
my

l
m − zlc

∣∣∣∣∣∣2
2
, (2)

TABLE 2 | Specific procedure of MT-SCCAR algorithm.

Algorithm: MT-SCCAR algorithm

Input: The genetic data X ∈ Rn × p, the neuroimaging data
Y ∈ Rn × q of M modalities, and the CS data Z ∈ Rn × C.
λu1, λu2, λu3, λv1, λv2, γu, andγv.

Ensure: canonical weights Vand U

1: While not converged regarding toV, U do

2:Update the diagonal matrix Dv1 and Dv2;

3:Solve vmaccording to Equation (12);

4:Normalize vm so that ||Yvm||
2
2 = 1;

5:Update the diagonal matrix Du1, Du2 and Du3;

6:Solve U according to Equation (15);

7:Normalize um so that ||Xum||
2
2 = 1;

8: End while
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where M is the number of neuroimaging modalities, C is the
number of cognitive assessments, and n is the total amount
of subjects. vm is the canonical weight of QTs for the mth
modalities,ylm is the neuroimaging data vector of the lth subjects
for the mth modalities, and zlc is the score of the lth subjects for
the cth cognitive assessments. This multi-task regression model
can jointly utilize neuropsychological assessments from different
complementary perspectives.

The MTSCCA Model for SNP-QT Associations
Unlike conventional multi-view SCCA models, MTSCCA learns
multiple SCCA tasks together by treating each imaging modality
association model as a task. This model was proposed by Du et al.
(2021) and can be defined as:

min
um,vm

∑M

m = 1
−uT

mX
TYmvm s.t. ||Xum||22 = 1, ||Ymvm||22

= 1, ∀m. (3)

For canonical weights U and V , each column um and vm
represents an individual learning task for different modalities.
The main advantage of this multi-task strategy is that SNP
canonical weight vectors do not need to be associated with
all imaging modalities simultaneously. Each task focuses
on identifying SNPs that are associated with only one
imaging modality.

The Regularization Terms
Multiple neuroimaging modalities can provide more
comprehensive information in terms of both structural and
functional perspectives. In our model, two principal tasks
corresponded to two neuroimaging modalities. MT-SCCAR
should be able to identify neuroimaging QTs shared among
multiple modalities and to enforce individual level sparsity.
Hence, � (V) was composed of two parts, which can be defined
as:

� (V) = λv1||V||2,1 + λv2||V||1,1, (4)

where λv1 and λv2 are positive parameters and can be tuned via
cross-validation.

The first penalty was defined as:

||V||2,1 =
∑q

i = 1

√∑M

m = 1
V2
i,j =

∑q

i = 1

∣∣∣∣V i,:
∣∣∣∣

2, (5)

This term aims to enforce task-consistent (modality-consistent)
sparsity on V , which encourages multi-modal imaging QTs to
share similar canonical weights.

The second penalty was defined as:

||V||1,1 =
∑q

j = 1

∑M

m = 1

∣∣vjm∣∣, (6)

This term indicates the absolute sum of all elements of V , which
helps to screen the entire ROIs to find the relevant ROIs.

Similarly, the regularization terms of U also include the above
two penalties, which can help discover SNPs that may affect
multiple brain regions. It is common knowledge that some
SNPs located in the same gene or LD block often have similar

functions and are jointly related to specific ROIs. It is essential
to model underlying hierarchical information among SNPs by
adding an extra penalty. Therefore, we defined � (U) as follows:

� (U) = λu1||U||2,1 + λu2||U||1,1 + λu3||U||G, (7)

where λu1, λu2, and λu3 are positive parameters, the
third penalty (Wang et al., 2012a) can be formulated as:

||U||G =
∑K

k = 1

√∑
i∈gk

∑M

j = 1
u2
ij, (8)

where K denotes the number of groups divided by
gene or LD. This penalty penalizes canonical weights
as a whole for each task and thus can fully use the
structural information.

The Optimization Algorithm
In order to address the problem defined in Equation (1),
according to the method that has been well studied previously
(Du et al., 2021), we can rewrite Equation (1):

min
U,V

∑M

m = 1

∑C

c = 1

∑n

l = 1

∣∣∣∣∣∣vT
my

l
m − zlc

∣∣∣∣∣∣2
2
+

∑M

m = 1
||Xum−Ymvm||22+

λv1||V||2,1 + λv2||V||1,1 + λu1||U||2,1 + λu2||U||1,1+

λu3||U||G s.t. ||Xum||22 = 1, ||Yvm||22 = 1, ∀m. (9)

We then use the Lagrange multiplier to solve this problem
by taking the partial derivatives of Equation (9) regarding um
andvm separately, which can change the formula from non-
convex to convex.

First, we treat U as constant, the Lagrange multiplier of
Equation (9) can be simplified as:∑M

m = 1

∑C

c = 1

∑n

l = 1

∣∣∣∣∣∣vT
my

l
m − zlc

∣∣∣∣∣∣2
2
+∑M

m = 1
||Xum−Ymvm||22+

λv1||V||2,1 + λv2||V||1,1 + γv
∑M

m = 1
||Ymvm||22 (10)

by dropping the constant terms, and γv is a positive parameter.
For each vm, We further take the partial derivatives of Equation
(10) and let the result be zero:

YT
mYmvm −

∑C

c = 1
YT
mzc − YT

mXum + λv1Dv1vm + λv2Dv2vm

+ (γv + 1)YT
mYmvm = 0, (11)

where Dv1 is a diagonal matrix with the ith element as 1
2||vi,:||2

(i ∈[
1, q

]
), and Dv2 is a diagonal matrix with ith element as

1
2||vim||2

(i ∈
[
1, q

]
, and m ∈ [1,M]). Obviously, we can take an

Frontiers in Genetics | www.frontiersin.org 5 August 2021 | Volume 12 | Article 706986

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-706986 July 31, 2021 Time: 12:54 # 6

Ke et al. Identification of Imaging Genetics Biomarkers

iterative rule to solve this problem since both Dv1 and Dv2 are
rely on canonical weights V . This rule can be formulated as:

vm =
(
YT
mYm + λv1Dv1 + λv2Dv2 + (γv + 1)YT

mYm

)−1

(∑C

c = 1
YT
mzc+Y

T
mXum

)
. (12)

Then, we treat V as a constant, the Lagrange multiplier of
Equation (9) can be simplified as:∑M

m = 1
||Xum−Ymvm||22+λu1||U||2,1 + λu2||U||1,1+

λu3||U||G + γu ||Xu||22 (13)

by dropping the constant terms, and γu is also a positive
parameter. Similar to vm, for U , we let the partial derivatives of
Equation (13) to be zero:

−XTY+ λu1Du1U + λu2Du2U + λu3Du3U + γuXTXU = 0,
(14)

whereDu1 is a diagonal matrix with the ith element as 1
2||ui,:||2

(i ∈[
1, p

]
), Du2 is a diagonal matrix with ith element as 1

2||uim||2
(i ∈[

1, p
]
, and m ∈ [1,M]), Du3 is a block diagonal matrix with

element as 1
2||Uk,:||F

Ik(k ∈ [1,K]), Ik is an identity matrix of the

same size with kth SNP groups, and Y = [Y1v1Y2v2...Ymvm].
Hence, the iterative rules can be formulated as:

U = (λu1Du1 + λu2Du2 + λu3Du3 + (γu + 1)XTX)
−1

XTY.
(15)

Based on the above analysis, the optimization algorithm of the
proposed method is shown in Table 2. We can update V and U
alternatively in each iteration until the predefined convergence
criterion is satisfied.

RESULTS AND DISCUSSION

Experimental Settings
To comprehensively evaluate the effectiveness of our proposed
MT-SCCAR model, two similar models that can analyze multi-
modal data were compared with MT-SCCAR. They are three-
view SCCA (TSCCA) and MTSCCA. Three-view SCCA can
process neuroimaging, genetics, and cognitive scores data by
extending conventional two-view association to three data types.
MTSCCA was used to evaluate the regression part of our
proposed model performance.

There are seven parameters in our model. Tuning all
these parameters will pay a high cost. In our experiment,
we fixed γu and γv to 1 since they mainly control the
amplitude of V and U (Chen and Liu, 2011). To tune these

FIGURE 3 | Comparison of CCCs under various noise levels for three models.
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FIGURE 4 | Comparison of canonical weights on synthetic data with the high noise level. (A) The ground truth canonical weights. (B) The estimated canonical
weights of TSCCA. (C) The estimated canonical weights of MTSCCA. (D) The estimated canonical weights of the proposed model.

parameters to appropriate values, we adopted a nested five-
fold cross-validation strategy. Specifically, we tuned them
in the range of

{
10−3, 10−2, 10−1, 1, 10, 102, 103} until

the highest mean testing canonical correlation coefficients
(CCCs) was generated in the inner loop. CCC was defined
as the Pearson correlation coefficient between Xu and
Yv, and can be used as a quantitative measure of SCCA
model performance (Hao et al., 2017). For multi-task
learning, CCC can be calculated by corr (Xmum,Ymvm)

for mth task. Also, we terminated the iteration when
both max

∣∣∣u(t+1)
i − uti

∣∣∣ ≤ 10−5 and max
∣∣∣v(t+1)

j − vtj
∣∣∣ ≤ 10−5

were satisfied. All models in our experiment have taken the same
parameter adjustment steps.

Results on Synthetic Data
We generated ten synthetic datasets with the same ground truth
of loading vectors but different noise levels. Assuming that X ∈
Rn × p,Y ∈ Rn × q, and Z ∈ Rn × q denote SNP, MRI, and PET
for all synthetic data sets, respectively. X was generated by
X = ul+ e,Y was generated byY = vl+ e, andZ was generated
by Z = wl + e, where u, v, and ware known loading vectors, l
is a latent vector with a 3-component Gaussian distribution to

simulate the disease course (Yan et al., 2018), and e is derived
from the Gaussian distribution N

(
0, σ2

e
)

with σ2
e as the noise

variance. In our study, n, p, and q were set to 90, 100, and 90,
respectively. All the 90 samples were classed into three groups
with centers -5, 0, 5. For neuropsychological assessment data, c
was generated by c = l + e. To assess the model performance
at various noise levels, we tested different noise variances ranging
from 1 to 10, with a step size of 1. The five-fold cross-validation
results are shown in Figures 3, 4.

Figure 3 plots the testing CCC for three models with
changing noise levels. Higher CCC indicates better performance
in identifying underlying associations. As expected, the
performance decreased with increased noise levels for all models.
All three models performed similarly well at low noise levels.
Models with the multi-task framework (MTSCCA, MT-SCCAR)
performed better than TSCCA at medium noise levels. Then MT-
SCCAR outperformed the other two models as the noise level
was further increased, suggesting that MT-SCCAR had a strong
ability to resist noise. Figure 4 shows the true signal of canonical
weights and canonical weights estimated by three models with
a noise level of 10. Important features were highlighted in the
heatmaps displaying ground truth. We could clearly observe
that the weight u estimated by MTSCCA was ambiguous. It was
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therefore difficult to recognize important features. TSCCA did
not identify complete important features. MT-SCCAR estimated
the best canonical weights that were consistent with the ground
truths. These results implied that the proposed model had the
potential to extract important features in real neuroimaging
genetics studies.

Results on Neuroimaging and Genetics
Data
In real neuroimaging genetics data application, all subjects with
SNP, MRI, PET, and three different cognitive information data
were inputted into MT-SCCAR.A total of 3793 SNPs with
LD or gene group information and 894 tag SNPs were used
separately. The group sparsity penalty treated each tagSNP as
an individual group. We then averaged the CCCs based on five-
fold cross-validation, representing the mean strength of identified
associations between SNPs and two imaging QTs.

As illustrated in Table 3, TSCCA achieved the highest training
CCCs but performed poorly in testing CCCs. These unreasonable
results may be caused by overfitting (Du et al., 2021). Multi-
task sparse canonical correlation analysis and regression achieved
the highest testing CCCs on both MRI and PET. Specifically,

TABLE 3 | Comparison of canonical correlation coefficients (mean ± std) in terms
of each model.

Training CCCs Testing CCCs

SNP-MRI SNP-PET SNP-MRI SNP-PET

TSCCA 0.82 ± 0.01 0.82 ± 0.01 0.21 ± 0.05 0.23 ± 0.03

MTSCCA 0.55 ± 0.05 0.46 ± 0.11 0.21 ± 0.03 0.30 ± 0.06

Proposed (LD) 0.55 ± 0.01 0.48 ± 0.01 0.34 ± 0.04 0.36 ± 0.05

Proposed(gene) 0.56 ± 0.02 0.47 ± 0.01 0.22 ± 0.02 0.39 ± 0.03

Proposed(tagSNP) 0.60 ± 0.03 0.52 ± 0.01 0.26 ± 0.05 0.27 ± 0.04

The best correlation coefficients are shown in boldface.

MT-SCCAR (LD) and MT-SCCAR (gene) achieved the highest
testing CCC on SNP-MRI association and SNP-PET association,
respectively. Notably, MT-SCCAR (gene) achieved relatively
small testing CCC on SNP-MRI association; MT-SCCAR (LD)
achieved a more balanced result than those of MT-SCCAR
(gene), which indicates that using LD group information is
more beneficial than using gene group information. The training
CCCs of MT-SCCAR with tagSNP were higher than those of
MT-SCCAR with group information since the different numbers

FIGURE 5 | Comparison of estimated canonical weights of imaging QTs. Each row represents: (1) TSCCA; (2) MTSCCA; (3) Proposed (LD); (4) Proposed (gene); (5)
Proposed (tagSNP). Within each row, there are two parts represent two imaging modalities.
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TABLE 4 | The top ten selected ROIs by the proposed model.

MRI PET

Hippocampus_R Cingulum_Post_R

Amygdala_R Angular_R

Caudate_R Hippocampus_R

Angular_R Hippocampus_L

ParaHippocampal_R Caudate_R

Lingual_R Caudate_L

Cingulum_Post_L Cingulum_Post_L

Cuneus_L Frontal_Inf_Oper_L

Hippocampus_L Thalamus_L

Frontal_Inf_Oper_L ParaHippocampal_R

The jointly selected ROIs are shown in boldface.

of SNPs were used. Moreover, MTSCCA also performed better
than TSCCA, which means the superiority of multi-task models
when dealing with multiple imaging QTs and genetic data.

The Top Selected ROIs
In addition to the CCCs, the canonical weights were also one of
the focuses of our study since they can help us find brain regions
being highly related to AD. Figure 5 shows the comparison of
mean canonical weights of two imaging QTs based on five-fold
cross-validation trials. Each row represents an SCCA model. The

heatmap color represents the estimated weight of each model, so
the selected QTs were highlighted in Figure 5. We can clearly
observe that several brain regions were selected by both MRI and
PET scans, such as the right hippocampal and the right angular
gyrus, indicating that these regions may be modality-consistent.
Additionally, TSCCA identified only modality-consistent QTs
but failed to identify modality-specific QTs. This was due to
the nature of its modeling strategy and may have resulted
in crucial biomarkers being ignored. Multi-task models can
identify modality-specific and modality-consistent QTs, which
also implied the limitations of conventional multi-view SCCA
models. In order to more accurately analyze the identified brain
regions, using the proposed model with LD group information,
the top ten ROIs of each modality were selected and sorted
according to the absolute values of canonical weights.

As shown in Table 4, ROIs that were jointly selected by two
imaging modalities are shown in boldface, all of which are known
to be closely related to the pathogenesis of AD according to
previous research. The hippocampus is essential for forming new
memories and was reported as one of the earliest affected brain
regions in AD and MCI (Moreno-Jimenez et al., 2019). Both left
and right caudate nucleus have been reported that their volume is
significantly different between AD and normal control (Cho et al.,
2014; Botzung et al., 2019). The right angular gyrus is considered
to be closely related to language ability, and patients with angular
gyrus syndrome are often found to have damage in this brain

FIGURE 6 | (A) Comparison of the classification accuracy of the selected imaging QTs by support vector machine (SVM). (B) Comparison of the classification
accuracy of the selected imaging QTs by random forest (RF).
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TABLE 5 | The top ten selected SNPs.

TSCCA MTSCCA Proposed (LD) Proposed (gene) Proposed (tagSNP)

rs735780 rs769449 rs769449 rs7256200 rs117641527

rs405509 rs7256200 rs7256200 rs10414043 rs8012948

rs578506 rs10414043 rs10414043 rs769449 rs1884910

rs4904901 rs4904901 rs4901317 rs7157639 rs78015388

rs7157639 rs61975596 rs429358 rs405509 rs2598123

rs429358 rs7794735 rs4904901 rs4904901 rs4335936

rs4257390 rs55636820 rs7157639 rs429358 rs59325138

rs7412 rs77640937 rs449647 rs75773078 rs439401

rs7794735 rs34273097 rs11629428 rs11629428 rs112097633

rs10256195 rs9972149 rs3829947 rs4901317 rs429358

FIGURE 7 | Comparison of the RMSE with respect to different numbers of SNPs from 100 to 1000. (A) QT of left hippocampus based on MRI scan. (B) QT of right
hippocampus based on MRI scan. (C) QT of left hippocampus based on PET scan. (D) QT of right hippocampus based on PET scan.

area (Horwitz et al., 1998). The right parahippocampal gyrus
affects the encoding and maintenance of bound information
related to working memory (Luck et al., 2010). The metabolic
reduction in the posterior cingulate gyrus is a very early sign in
AD (Minoshima et al., 1997). Notably, all the remaining brain
regions have also been reported to be associated with AD in
published literature. These satisfactory results were due to the
inclusion of cognitive information into the linear regression to
adjust weighting.

In order to further thoroughly verify that the neuroimaging
biomarkers found by the proposed model are more disease-
related than those found by the other two models. Selecting
the top ten QTs as input features, support vector machine

(SVM) with Gaussian radial basis function (RBF) kernel and
random forest (RF) were adopted as classification methods. The
parameters were tuned with five-fold cross-validation based on
the training sets. Figure 6 presents the classification accuracies
of the two classifiers. The testing classification results showed
that the classifier using the features selected by MT-SCCAR
achieved the highest accuracies, thus indicating the superiority of
MT-SCCAR in identifying disease-related biomarkers. Notably,
the testing classification accuracies were relatively low for both
SVM and RF, probably due to inevitable noise during the
feature extraction process of brain imaging. These results were
also consistent with previous studies (Wang et al., 2012b;
Adeli et al., 2017).
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FIGURE 8 | (A) The heatmap of pairwise correlations between SNPs and ROIs of MRI scan. (B) The heatmap of pairwise correlations between SNPs and ROIs of
PET scan.

TABLE 6 | The correlation coefficients and p-values of eight SNP-ROI pairs.

SNP-ROI pairs Correlation coefficient p-value

rs4904901-Angular_R(MRI) −0.189 0.002

rs4904901- Angular_R(PET) 0.180 0.003

rs7157639-Hippocampus_R(MRI) 0.176 0.003

rs7157639-Cingulum_Post_R(PET) 0.204 0.001

rs11629428-Hippocampus_L(MRI) 0.218 0.0003

rs11629428- Cingulum_Post_R(PET) 0.171 0.004

rs3829947- Angular_R(MRI) 0.078 0.067

rs3829947- Hippocampus_L(PET) 0.135 0.025

The Top Selected SNPs
In addition to neuroimaging biomarkers, SCCA models can also
identify genetic biomarkers. We averaged the SNP canonical
weights into a single vector and selected the top ten SNPs. As
illustrated in Table 5, the proposed model with LD or gene
group information yielded meaningful results. For example,
rs769449 (APOE) is located in promoter and enhancer areas
for multiple brain tissues and is associated with AD (Liu
et al., 2018). Moreover, the well-known AD risk biomarker
rs429358 (APOE) was also identified by the proposed model,
demonstrating its strong correlation ability. The remaining five
SNPs of the proposed model, i.e., rs7256200 (3.3 kb of APOE),
rs10414043 (3kb of APOE), rs4901317 (FERMT2), rs449647 (0.5
kb of APOE), and rs405509 (0.2 kb of APOE), have also been
documented to increase the risk of AD in previous studies
(Lin et al., 2017; Xiao et al., 2017). However, four selected
SNPs have not yet been reported to be related to AD. They
still need further research to confirm in the future. Next, we
compared the top ten SNPs identified by MT-SCCAR (LD
and gene) with the 894 tagSNPs. Interestingly, MT-SCCAR
(LD) identified six tagSNPs (rs7256200, rs4901317, rs429358,
rs7157639, rs449647, and rs3829947). Multi-task sparse canonical
correlation analysis and regression (gene) identified five tagSNPs
(rs7256200, rs7157639, rs405509, rs429358, and rs4901317). This
implied that using tagSNP will reduce the number of SNPs
that need to be analyzed and facilitate identifying significant

SNPs. The proposed model with tagSNP also identified some
significant SNPs. For example, rs59325138 (3.6 kb of APOE) has
been reported to modify the cerebrospinal fluid apolipoprotein
E protein levels (Cervantes et al., 2011). The Beta-Amyloid (1-
42), an AD biomarker, is associated with rs439401 (1.8kb of
APOE) (Xu et al., 2014). The TSCCA identified the rs4292358
and three other SNPs (rs405509, rs7412, and rs7794735) that have
been reported previously (Arking et al., 2008; Ma et al., 2016;
Zhen et al., 2017). The MTSCCA also identified four SNPs
(rs769449, rs7256200, rs10414043, and rs7794735) but cannot
identify rs429358. In summary, the proposed model was more
accurate for identifying disease-specific genetic biomarkers than
the other two models.

Alzheimer’s disease (AD) usually first affects the hippocampus,
resulting in cognitive decline and memory loss (Moreno-Jimenez
et al., 2019). Therefore, when selecting the same number of
features, the predictive effect of the QTs of the hippocampus
can be used to evaluate model performance. Based on this
analysis, we built a regression model to predict the QTs of
the hippocampus from MRI and PET scans. Different numbers
of SNPs were selected from 100 to 1000 with a step of 100.
Using a support vector machine (SVR) with RBF kernel, we
calculated the average root mean squared error (RMSE) for each
model based on five-fold cross-validation. For a fair comparison,
we only compared TSCCA, MTSCCA, MT-SCCAR (gene), and
MT-SCCAR(LD) since MT-SCCAR (tagSNP) used only 894
tagSNPs. Figure 7 shows the testing RMSE of the left and right
hippocampus obtained by different imaging techniques. Smaller
RMSE indicates that the selected SNPs are more related to AD.
According to Figure 7, the prediction errors were lowest for the
proposed model. These results suggested that the proposed model
outperformed the other two models on four imaging QTs.

Pairwise Correlation Analyses
Based on the top ten selected ROIs and SNPs obtained by the
proposed model with LD group information, we drew heatmaps
of pairwise correlation coefficients between SNPs and two
imaging QTs. As illustrated in Figure 8, it is clearly observed that
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the selected SNPs were mainly located in and around the APOE
region. APOE is the major genetic risk factor for AD (Munoz
et al., 2019). Moreover, the association patterns of SNPs and ROIs
selected by MRI and PET were very similar, which indicated the
ability of our model to identify modality-consistent biomarkers.

To gain more insight, we further analyzed four undocumented
SNPs (rs4904901, rs7157639, rs11629428, and rs3829947)
identified by MT-SCCAR with LD group information. The
imaging QTs which had the strongest association with these
four SNPs were singled out. Consequently, a total of eight SNP-
ROI pairs were generated to validate the proposed model. These
associations can also allow us to explore relationships from
the microscopic molecular level to the macroscopic brain level.
Table 6 shows the Pearson correlation coefficients and p-values
of eight SNP-ROI pairs. The p-values of all eight pairs were
small, indicating a significant correlation within each pair. For
rs4904901,it was correlated strongest with the same brain region
across both imaging modalities, which suggests it is a modality-
consistent association pattern. For the rest of the SNPs, the
heterogeneous association patterns may have great potential to
help us understand how changes in molecular level influence
brain structure and metabolic.

CONCLUSION

In this paper, we proposed the MT-SCCAR model to investigate
potential neuroimaging and genetic biomarkers. Compared with
TSCCA and MTSCCA, the proposed model integrated genotype,
multiple neuroimaging, and neuropsychological assessments into
a single model to analyze multi-modal information. We tested
our model on synthetic and ADNI data sets and compared its
association results with those of TSCCA and MTSCCA. We
found that our model demonstrated higher CCCs of 0.34 ± 0.04
(LD) and 0.39± 0.03 (gene) compared with the CCCs of TSCCA
(0.23 ± 0.03) and MTSCCA (0.30 ± 0.06). Moreover, MT-
SCCAR identified a small number of SNPs from enormous SNPs
that were related to AD, wherein all of the top ten selected ROIs
were AD brain risk regions. These satisfactory results show that
MT-SCCAR outperforms TSCCA and MT-SCCA in detecting
disease-specific biomarkers on multi-modal data.

The proposed model incorporates SNPs, neuroimaging
measurements, and cognitive scores. However, there are a

number of biological pathways that correlate with structural
changes in the brain. Therefore, future efforts should aim to
integrate data across more levels (i.e., gene expression, cell, and
DNA methylation) for a more sophisticated understanding of the
biological pathways leading from gene to disease.
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